Inox-Maxi SSC1 Calorifiers

- Stainless steel calorifiers
- Extremely low standby heat losses
- Large coil surface area
- Large connections
- Large inspection hatch
- Up to 2000 litres storage capacity
- Continuous delivery at 50°C rise up to 1305 l/h

Inox-Maxi SSC1 Calorifiers – Stainless steel, perfect for tough conditions

Durable construction providing peace of mind

Constructed from 316L grade stainless steel providing excellent resistance to attack from corrosion.

Specially designed coil

Unique coil design to reduce cold spots and to assist with annual maintenance.

Extremely low standby heat losses

Increasing system efficiency due to the extremely low standby heat loss as low as 2.3 kW/24hr.

Large coil surface area

The specially designed coil has a larger surface area providing better and faster heat transfer.

Durability

The Inox-maxi SSC1 calorifiers are manufactured from grade 316L stainless steel and in compliance with ErP Eco-Design requirements for Energy Related Products.

Large connections

Large connections on the cylinder coil which reduces the pressure drop within the unit.

External control

The stored DHW temperature can be monitored and controlled externally.

A wide range of sizes available

Six models providing storage capacities ranging form 500 to 2000 litres and heat transfer of between 41kW to 76kW with primary flow temperature at 80°C.

Cost effective

Due to the stainless steel construction of the unit, the cost of the yearly maintenance of the unit is greatly reduced by not requiring sacrificial anodes.

Removable jacket

800L models and above are supplied with removable jackets and insulation.

Immersion heater option

ELCO offers the option of adding an immersion heater to aid in the recovery time of the cylinder. For more information please see the table on the right.

Inspection hatch

Easy access to the base of the cylinder through the inspection hatch for yearly maintenance.

Accessories

Matched optional/additional un-vented kits are available to assist with installation.

ltem No.	Description
1	Drain
2	Domestic cold water inlet
3	Primary circuit return
4	1/2" BSP tapping for instrumentation
5	Blind inspection plate
6	Primary circuit flow
7	1/2" BSP tapping for instrumentation
8	Connection for immersion heater
11	DHW secondary recirculation
13	Tapping for T&P valve
15	Domestic hot water outlet

Dimensions

Inox-Maxi	Df	De	н	Α	H1	H2	Н3	H4	H6	H7	H8	H11	H13
SSC1							(mm)						
500	650	750	1790	1941	71	256	356	411	1046	1086	1154	1341	1496
800	790	1010	1943	2008	114	322	422	477	997	1086	1112	1330	1532
1000	800	1020	2192	2251	112	337	412	477	1256	1086	1337	1557	1792
1300	950	1170	2213	2289	118	313	438	483	1213	1086	1318	1578	1798
1500	1000	1220	2197	2280	94	327	452	497	1227	1086	1302	1542	1762
2000	1250	1470	2070	2205	85	350	475	520	1035	1086	1160	1390	1575

Technical data – Inox-Maxi SSC1 Calorifiers

	Inox-Maxi SSC1		500	800	1000	1300	1500	2000
_			500			4.070	1000	
	Cylinder capacity	litres	503	/59	902	12/2	1398	2018
	Performance data when Primary flow 80°C and return 60°C							
	Output at primary temp 80/60°C	kW	40.7	48.2	62.0	69.0	69.0	75.9
	Coil nominal primary flow rate at primary temp 80/60°C	litres/sec	0.50	0.59	0.76	0.84	0.84	0.93
	Pressure loss via coil at the nominal primary flow rate	Кра	6.0	1.9	3.6	4.8	4.8	6.2
	Peak 10 minute DHW delivery at $\Delta T 50^\circ C$ with primary temp 80/60°C	litres	620	897	1080	1470	1596	2236
	Continuous DHW delivery $\Delta T~50^\circ C$ with primary temp $80/60^\circ C$	litres/hour	699	828	1067	1186	1186	1305
L	Cylinder capacity recovery time DHW ΔT 50°C, with primary temp 80°C and nominal flow rate	minutes	54	69	63	81	88	116
Vate	Performance data when Primary flow 80° C and return 70° C							
>	Output at primary temp 80/70°C	kW	44.9	54.2	69.0	76.4	76.4	83.9
	Coil nominal primary flow rate at primary temp 80/70°C	litres/sec	1.10	1.33	1.69	1.87	1.87	2.05
	Pressure loss via coil at the nominal primary flow rate	Кра	24.3	7.9	15.0	19.7	19.7	25.2
	Peak 10 minute DHW delivery at ΔT 50°C with primary temp 80/70°C	litres	632	914	1100	1491	1617	2258
	Continuous DHW delivery $\Delta T~50^\circ C$ with primary temp $80/70^\circ C$	litres/hour	773	932	1187	1314	1314	1442
	Cylinder capacity recovery time DHW ΔT 50°C, with primary temp 80°C and nominal flow rate	minutes	45	57	53	68	74	98
	Primary/secondary operating pressure (maximum)	bar			12	2/6		
	Primary/secondary operating temperature (maximum)	°C			110	/95		
rgy	Standby heat loss (DHW temperature 65°C)	kW/24hr	2.3	2.7	2.8	3.5	3.8	4.3
Ene	Energy class		С	С	С	С	С	С
Electrical	Optional electric elements	kW/phase	3/1	3/1	12/3	12/3	12/3	12/3
	Coil connections sizes	inches	1"	1¼"	1¼"	1¼"	1¼"	11⁄4"
SU	Coil surface area	m²	2.1	2.7	3.4	3.7	3.7	4.1
aneo	Weight empty	kg	100	160	185	250	262	377
scell	Weight full	kg	603	919	1087	1522	1660	2395
Mis	Width of cylinder (DE)	mm	750	1010	1020	1170	1220	1470
	Height of cylinder (H)	mm	1790	1943	2192	2212	2197	2070

Connections

Inox-Maxi				5		11	13	15
SSC1				Ga				
500	1/2"	1"	1"	Øi 180mm	1 1/2"	1"	1/2"	1"
800	3/4"	1"	1 1/4"	Øi 180mm	2"	1"	3/4"	1 1/4"
1000	3/4"	1"	1 1/4"	Øi 180mm	2"	1"	3/4"	1 1/4"
1300	1"	2"	1 1/4"	Øi 240mm	2"	2"	3/4"	2"
1500	1"	2"	1 1/4"	Øi 240mm	2"	2"	3/4"	2"
2000	1"	2"	1 1/4"	Øi 240mm	2"	2"	3/4"	2"

Examples of hydraulic schemes -Inox-Maxi SSC1

These illustrations are designed to provide general guidance on the hydraulic scheme and should not be considered as an installation drawing.

		400mm	Inox-Maxi SSC1	500	800	1000	1300	1500	2000
--	--	-------	-------------------	-----	-----	------	------	------	------